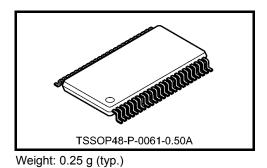
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic


TC74LCX16245FT

Low-Voltage 16-Bit Bus Transceiver with 5-V Tolerant Inputs and Outputs

The TC74LCX16245FT is a high-performance CMOS 16-bit bus transceiver. Designed for use in 2.5-V or 3.3-V systems, it achieves high-speed operation while maintaining the CMOS low power dissipation.

The device is designed for low-voltage (2.5-V or 3.3-V) V_{CC} applications, but it could be used to interface to 5-V supply environment for both inputs and outputs.

This 16-bit bus transceiver is controlled by direction control (DIR) inputs and output enable (\overline{OE}) inputs which are common to each byte. It can be used as two 8-bit transceiver or one 16-bit transceiver. The direction of data transmission is determined by the level of the DIR inputs. The \overline{OE} inputs can be used to disable the device so that the busses are effectively isolated.

All inputs are equipped with protection circuits against static discharge.

Features (Note)

- Low-voltage operation: $V_{CC} = 2.0$ to 3.6 V
- High-speed operation: $t_{pd} = 4.5 \text{ ns} (max) (V_{CC} = 3.0 \text{ to } 3.6 \text{ V})$
- Ouput current: $|I_{OH}|/I_{OL} = 24 \text{ mA} (\min) (V_{CC} = 3.0 \text{ V})$
- Latch-up performance: -500 mA
- Package: TSSOP
- Bidirectional interface between 5.0 V and low-voltage (2.5-V or 3.3-V) signals
- Power-down protection provided on all inputs and outputs
 - Note: Do not apply a signal to any bus pins when it is in the output mode. Damage may result. All floating (high impedance) bus pins must have their input level fixed by means of pull-up or pull-down resistors.

Pin Assignment (top view)

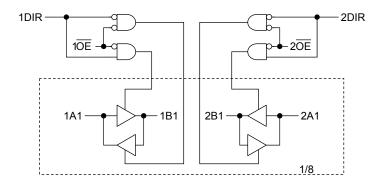
			1	
1DIR	1	\bigcirc	48	10E
1B1	2		47	1A1
1B2	3		46	1A2
GND	4		45	GND
1B3	5		44	1A3
1B4	6		43	1A4
V _{CC}	7		42	V _{CC}
1B5	8		41	1A5
1B6	9		40	1A6
GND	10		39	GND
1B7	11		38	1A7
1B8	12		37	1A8
2B1	13		36	2A1
2B2	14		35	2A2
GND	15		34	GND
2B3	16		33	2A3
2B4	17		32	2A4
V _{CC}	18		31	V _{CC}
2B5	19		30	2A5
2B6	20		29	2A6
GND	21		28	GND
2B7	22		27	2A7
2B8	23		26	2A8
2DIR	24		25	20E
	I		I	

IEC Logic Symbol

10E 1DIR 20E 2DIR	48 G3 1 G3 3 EN1 (BA) 3 EN2 (AB) 25 G6 24 6 EN4 (BA) 6 EN5 (AB)	
1A1 —		<mark>- ← 2</mark> 1B1
1A2 — 1A3 — 1A4 — 1A5 — 1A6 — 1A7 — 1A8 — 2A1 —	$46 \leftrightarrow 44 \leftrightarrow 43 \leftrightarrow 41 \leftrightarrow 40 \leftrightarrow 38 \leftrightarrow 37 \leftrightarrow 36 \leftarrow \nabla 4 \triangleleft 5 \nabla$	$\begin{array}{c c} & 3 \\ \hline & 5 \\ \hline & 5 \\ \hline & 1B3 \\ \hline & 6 \\ \hline & 1B4 \\ \hline & 8 \\ \hline & 9 \\ \hline & 11 \\ \hline & 12 \\ \hline & 13 \\ \hline & 2B1 \\ \hline \end{array}$
2A2 — 2A3 —	$35 \leftrightarrow$ 33	$\begin{array}{r} & 14 \\ & 2B2 \\ \hline & 16 \\ \hline & 2B3 \end{array}$
2A3 — 2A4 — 2A5 —	$32 \longleftrightarrow$	$\begin{array}{c} 17 \\ 17 \\ 19 \\ 285 \end{array}$
2A6 — 2A7 — 2A8 —	$\begin{array}{c} 29 \\ 27 \\ 26 \\ \hline \end{array}$	$\begin{array}{c} & 20 \\ \hline & 22 \\ \hline & 23 \\ \hline & 23 \\ \hline & 288 \end{array}$

<u>TOSHIBA</u>

Truth Table


Inp	outs	Fund	ction	
10E	1DIR	Bus 1A1-1A8	Bus 1B1-1B8	Outputs
L	L	Output	Input	A = B
L	н	Input	Output	B = A
Н	Х	Z		Z

Inputs		Fund	ction		
20E	2DIR	Bus 2A1-2A8	Bus 2B1-2B8	Outputs	
L	L	Output	Input	A = B	
L	Н	Input	Output	B = A	
Н	Х	Z		Z	

X: Don't care

Z: High impedance

System Diagram

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit	
Power supply voltage	V _{CC}	-0.5 to 6.0	V	
DC input voltage (DIR, OE)	V _{IN}	-0.5 to 7.0	V	
DC bus I/O voltage	Mue	-0.5 to 7.0 (Note 2)	V	
DC bus i/O voltage	V _{I/O}	-0.5 to V_{CC} + 0.5 $$ (Note 3)	v	
Input diode current	lık	-50	mA	
Output diode current	I _{OK}	±50 (Note 4)	mA	
DC output current	IOUT	±50	mA	
Power dissipation	PD	400	mW	
DC V_{CC} /ground current per supply pin	I _{CC} /I _{GND}	±100	mA	
Storage temperature	T _{stg}	–65 to 150	°C	

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

- Note 2: Output in OFF state
- Note 3: High or low state. IOUT absolute maximum rating must be observed.
- Note 4: $V_{OUT} < GND, V_{OUT} > V_{CC}$

Operating Ranges (Note 1)

Characteristics	Symbol	Rating	Unit	
Power supply voltage	V _{CC}	2.0 to 3.6	V	
Tower suppry voltage	VCC	1.5 to 3.6 (Note 2)	v	
Input voltage (DIR, OE)	V _{IN}	0 to 5.5	V	
Bus I/O voltage	Mus	0 to 5.5 (Note 3)	V	
Bus I/O voltage	V _{I/O}	0 to V _{CC} (Note 4)	v	
		±24 (Note 5)		
Output current	I _{OH} /I _{OL}	±12 (Note 6)	mA	
		±8 (Note 7)		
Operating temperature	T _{opr}	-40 to 85	°C	
Input rise and fall time	dt/dv	0 to 10 (Note 8)	ns/V	

- Note 1: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs must be tied to either VCC or GND. Please connect both bus inputs and the bus outputs with VCC or GND when the I/O of the bus terminal changes by the function. In this case, please note that the output is not short-circuited.
- Note 2: Data retention only
- Note 3: Output in OFF state
- Note 4: High or low state
- Note 5: $V_{CC} = 3.0$ to 3.6 V
- Note 6: $V_{CC} = 2.7$ to 3.0 V
- Note 7: $V_{CC} = 2.3$ to 2.7 V
- Note 8: $V_{IN} = 0.8$ to 2.0 V, $V_{CC} = 3.0$ V

<u>TOSHIBA</u>

Electrical Characteristics

DC Characteristics (Ta = -40 to 85°C)

Characteristics Symbol		Symbol	Test Co	ndition		Min Max		Unit
		e yzei			V _{CC} (V)		Max	Onic
H-level		VIH			2.3 to 2.7	1.7	_	
Input voltage	11-16761	۷IH	_	—		2.0	_	V
input voltage	L-level	VIL			2.3 to 2.7	_	0.7	v
	L-level	VIL	_	_	2.7 to 3.6	_	0.8	
	I _{OH} =		I _{OH} = -100 μA	2.3 to 3.6	V _{CC} - 0.2	_		
				$I_{OH} = -8 \text{ mA}$	2.3	1.8	_	
	H-level	V _{OH}	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -12 \text{ mA}$	2.7	2.2		V
				I _{OH} = -18 mA	3.0	2.4	_	
Output voltage				I _{OH} = -24 mA	3.0	2.2	_	
				I _{OL} = 100 μA	2.3 to 3.6		0.2	
				I _{OL} = 8 mA	2.3		0.6	
	L-level	V _{OL}	I _{OL} = 1	I _{OL} = 12 mA	2.7		0.4	
				I _{OL} = 16 mA	3.0		0.4	
				I _{OL} = 24 mA	3.0		0.55	
Input leakage current		I _{IN}	$V_{IN} = 0$ to 5.5 V		2.3 to 3.6		±5.0	μA
3-state output OFF state current		107	$V_{IN} = V_{IH} \text{ or } V_{IL}$		2.3 to 3.6	_	±5.0	μA
		loz	V _{OUT} = 0 to 5.5 V		2.3 10 3.0		±3.0	μA
Power-off leakage curr	rent	IOFF	$V_{IN}/V_{OUT} = 5.5 V$		0		10.0	μA
Quiescent supply curre	Quieseent augely aurrent		$V_{IN} = V_{CC}$ or GND		2.3 to 3.6		20.0	
Quicocon Supply Curre	Quiescent supply current		$V_{IN}/V_{OUT} = 3.6$ to 5.5 \	/	2.3 to 3.6		±20.0	μA
Increase in Icc per input	ut	ΔI_{CC}	$V_{IH} = V_{CC} - 0.6 V$		2.3 to 3.6		500	

AC Characteristics (Ta = -40 to 85°C)

Characteristics	Cumb ol	Symbol Test Condition			Min	Max	Unit
Characteristics	Symbol	Test Condition	V _{CC} (V)	CL(pF)	IVIIII	Max	Unit
	+		2.5 ± 0.2	30	1.5	5.4	
Propagation delay time	t _{pLH} t _{pHL}	Figure 1, Figure 2	2.7	50	1.5	5.2	ns
	чрн∟		$\textbf{3.3}\pm\textbf{0.3}$	50	1.5	4.5	
	+		2.5 ± 0.2	30	1.5	8.5	
3-state output enable time	^t pZL ^t pZH	Figure 1, Figure 3	2.7	50	1.5	7.2	ns
			$\textbf{3.3}\pm\textbf{0.3}$	50	1.5	6.5	
	.		2.5 ± 0.2	30	1.5	7.7	
3-state output disable time	t _{pLZ}	Figure 1, Figure 3	2.7	50	1.5	6.9	ns
	t _{pHZ}		$\textbf{3.3}\pm\textbf{0.3}$	50	1.5	6.0	
Output to output skew t _{osHL}			2.5 ± 0.2	30	_	_	
		(Note)	2.7	50	—	—	ns
	tosHL		$\textbf{3.3}\pm\textbf{0.3}$	50	_	1.0	

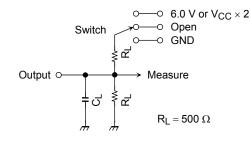
Note: Parameter guaranteed by design. $(t_{osLH} = |t_{pLHm} - t_{pLHn}|, t_{osHL} = |t_{pHLm} - t_{pHLn}|)$

Dynamic Switching Characteristics (Ta = 25°C, input: $t_r = t_f = 2.5$ ns, $R_L = 500 \Omega$)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Unit	
Quiet output maximum	V _{OLP}	$V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}, C_L = 30 \text{pF}$	2.5	0.6	V	
dynamic V _{OL}	VOLP	$V_{IH}=3.3$ V, $V_{IL}=0$ V, C_L =50pF	3.3	0.8	v	
Quiet output minimum	Noud	$V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}, C_L = 30 \text{pF}$	2.5	0.6	V	
dynamic V _{OL}	Volv	$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}, C_L = 50 \text{pF}$	3.3	0.8	v	

Capacitive Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Unit
Input capacitance	C _{IN}	—	3.3	7	pF
Bus input capacitance	C _{I/O}	—	3.3	8	pF
Power dissipation capacitance	C _{PD}	f _{IN} = 10 MHz (Not	e) 3.3	25	pF


Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/16$ (per bit)

TOSHIBA

AC Test Circuit

Parameter	Switch		
t _{pLH} , t _{pHL}	Open		
t _{pLZ} , t _{pZL}	6.0 V V _{CC} × 2	$@V_{CC} = 3.3 \pm 0.3 \text{ V} \\ @V_{CC} = 2.5 \pm 0.2 \text{ V} \\ \label{eq:V_CC}$	
t _{pHZ} , t _{pZH}	GND		

AC Waveform

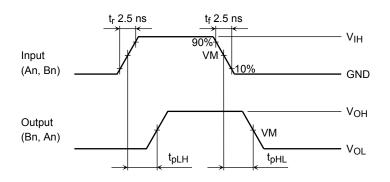
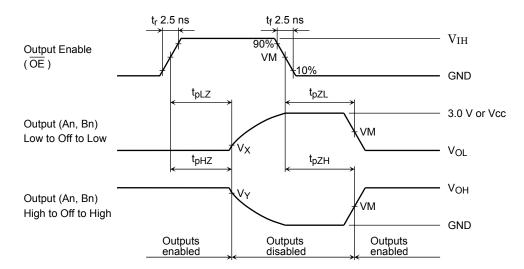
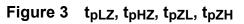
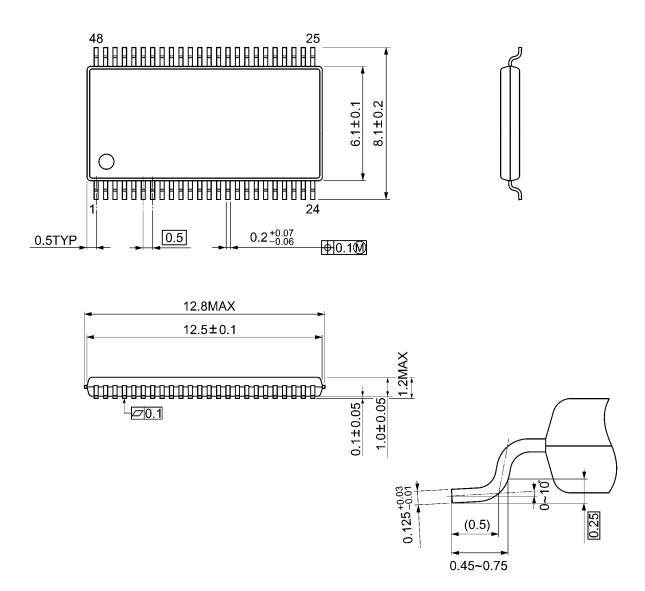




Figure 2 t_{pLH}, t_{pHL}


Symbol		V _{CC}	
Symbol	$3.3\pm0.3\;V$	2.7 V	$2.5\pm0.2\;V$
VIH	2.7 V	2.7 V	V _{CC}
VM	1.5 V	1.5 V	V _{CC} /2
VX	V _{OL} + 0.3 V	V _{OL} + 0.3 V	V _{OL} + 0.15 V
VY	V _{OH} – 0.3 V	V _{OH} – 0.3 V	V _{OH} – 0.15 V

Package Dimensions

TSSOP48-P-0061-0.50A

Unit: mm

Weight: 0.25 g (typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN

• The information contained herein is subject to change without notice.

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.

- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.).These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.